
The Really Important Formulas

Other Important Formulas

Series & Parallel (Resistance)

Frequency and period

F = 1 / T and T = 1 / F where 'T' = 1 cycle

Series & Parallel Resistance (non-math)

If x equal value resistors are in parallel, the total R is the value of one resistor over the number of resistors, or R/X.

The total resistance in a parallel circuit is always less than that of the smallest resistor.

The total resistance of two equal value resistors is half the value of either resistor.

Unit Conversions

Name	Symbol	Multiplier	Exponent	
Giga	G	X 1 000 000 000	10 ⁹	
Mega	Μ	X 1 000 000	10 ⁶	
Kilo	К	X 1 000	10 ³	
UNIT				
milli	m	/ 1 000	10-3	
micro	μ	/ 1 000 000	10-6	
nano	n	/ 1 000 000 000	10 ⁻⁹	
pico	р	/1 000 000 000 000	10 ⁻¹²	

Reactance

Capacitive and Inductive Reactance

- **Capacitance** (*C*) refers to the physical properties of a capacitor.
- Inductance (L) refers to the physical properties of an inductor.
- **Reactance** (*X*), measured in ohms, is the opposition to AC current by a capacitor or inductor (or both).
- **Impedance** (*Z*), AC resistance, is reactance plus pure resistance. (See optional formulas for the math.)
- **Capacitive reactance** (*Xc*) is the opposition to AC current flow by a capacitor.
 - It is inversely proportional to frequency.
- Inductive reactance (X_L) is the opposition to AC current flow by an inductor.
 - It is directly proportional to frequency.

Decibels

Power	Decibel
2	3
4	6
6	8
8	9
10	10
100	20
1000	30

<- Remember this chart, and you know all the decibel conversions you need to know for the exam. Also read the article at http://www.ve3fyn.ca/nvis/Decibel.htm

 * A change of 1 dB is generally the minimum a person can detect if it is expected. A change of 3 dB, (doubling or halving the power) is generally the minimum a person can detect if it is not expected.

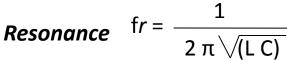

dB = $10Log(P_2/P_1)$ where 'P' is power dB = $20Log(E_2/E_1)$ where 'E' is voltage On your calculator: $(P_2 \div P_1) \{Log\} \ast 10 = or (E_2 \div E_1) \{Log\} \ast 20 =$ dB to Power Ratio on your calculator: $(dB \div 10) \{2ndF\} \{10^x\} =$

To convert a two-digit decibel to its power ratio:

The first digit tells you the magnitude. The second digit tells you the value. So, with 36 dB, the '3' tells you it's in the thousands. The '6' is a power radio of 4. So 36 dB = 4000 times the power.

Good Stuff That's Not on the Basic Exam

Impedance turns ratio


Impedance

$$Z = \sqrt{R^2 + X^2}$$

Z = Impedance (ohms) R = Resistance (ohms) X = Reactance (ohms)

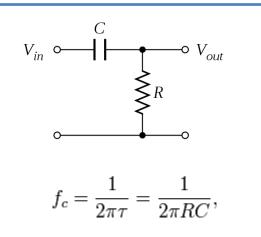
Resonant Frequency

- Current lags behind voltage in an inductor.
- Current leads voltage in a capacitor.
- At the resonant frequency in an RLC circuit, the inductor and capacitor are in-phase.
- In an RLC series circuit, at resonance, current is maximum.
- In a parallel LC circuit, at resonance current is minimum.

More Good Stuff That's Not on the Basic Exam

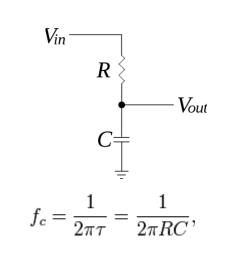
Q of Tuned Circuits

- "Q" refers to the sharpness of the response curve of a tuned circuit.
- It is the ratio between X_L and R.
- Note that Q is frequency sensitive, as X_L varies with frequency.

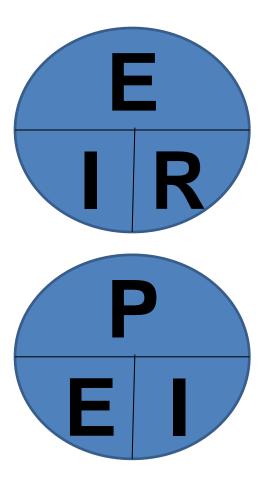

 $Q = \frac{X_1}{R}$

- A high Q (50 250) indicates a coil with little resistance at RF, and a sharp response curve.
- Capacitors have a very high Q, which is effectively irrelevant.
- In a parallel tuned circuit, Q is impedance over reactance (Z / X)

 $Q = \frac{Z}{X}$


Cut-off Frequencies (also not on exam)

High-Pass Filters


- High-pass filters pass high frequencies and reject signals at frequencies below the cut-off point.
- At the cut-off point, output power is 1/2 input power.
- R represents the impedance of the circuit in question.
- Higher value capacitors lower the cut-off frequency (frequencies below the cut-off are attenuated).

Low-Pass Filters

- Low-pass filters pass low frequencies and shunt higher frequencies to ground.
- At the cut-off point, output power is 1/2 input power.
- R represents the impedance of the circuit in question.
- Lower value capacitors lower the cut-off frequency (frequencies above the cut-off are attenuated).

In Case you Forgot...

- E = voltage (energy) measured in volts
- I = current measured in amperes
- R = resistance measured in ohms
- P = power measured in watts

E = I * R	P = E * I
I = E / R	E = P / I
R = E / I	I = P/E

Other formulae may be derived from this. For example: P = E * IE = R * I Therefore, P = R * I * I, or $P = R * I^2$